Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.564
Filtrar
1.
BMC Biotechnol ; 24(1): 15, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521922

RESUMO

BACKGROUND: Removal of heavy metals from water and soil is a pressing challenge in environmental engineering, and biosorption by microorganisms is considered as one of the most cost-effective methods. In this study, the metal-binding proteins MerR and ChrB derived from Cupriavidus metallidurans were separately expressed in Escherichia coli BL21 to construct adsorption strains. To improve the adsorption performance, surface display and codon optimization were carried out. RESULTS: In this study, we constructed 24 adsorption engineering strains for Hg2+ and Cr6+, utilizing different strategies. Among these engineering strains, the M'-002 and B-008 had the strongest heavy metal ion absorption ability. The M'-002 used the flexible linker and INPN to display the merRopt at the surface of the E. coli BL21, whose maximal adsorption capacity reached 658.40 µmol/g cell dry weight under concentrations of 300 µM Hg2+. And the B-008 overexpressed the chrB in the intracellular, its maximal capacity was 46.84 µmol/g cell dry weight under concentrations 500 µM Cr6+. While in the case of mixed ions solution (including Pb2+, Cd2+, Cr6+ and Hg2+), the total amount of ions adsorbed by M'-002 and B-008 showed an increase of up to 1.14- and 4.09-folds, compared to the capacities in the single ion solution. CONCLUSION: The construction and optimization of heavy metal adsorption strains were carried out in this work. A comparison of the adsorption behavior between single bacteria and mixed bacteria systems was investigated in both a single ion and a mixed ion environment. The Hg2+ absorption capacity is reached the highest reported to date with the engineered strain M'-002, which displayed the merRopt at the surface of chassis cell, indicating the strain's potential for its application in practical environments.


Assuntos
Mercúrio , Metais Pesados , Poluentes Químicos da Água , Adsorção , Proteínas de Transporte/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Íons/metabolismo , Mercúrio/metabolismo , Metais Pesados/metabolismo , Poluentes Químicos da Água/metabolismo
2.
Aquat Toxicol ; 270: 106896, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490093

RESUMO

Inorganic mercury (IHg) is hazardous to marine organisms especially resulting in neurotoxicity, bivalves are sensitive to pollutants as "ocean sentinel", but data on the neurotoxicity of IHg in bivalves are sparse. So we chosed M. chinensis philippi with typical neural structures in bivalves to investigate the neurotoxicity of IHg, which could be helpful to understand the specificity of neural regulation and the response characteristics of bivalves. After acute exposed to IHg (HgCl2) for 24 h, the metabolites of ganglion tissues in M. chinensis philippi were evaluated using 1H-nuclear magnetic resonance based metabolomics; Ca2+, neurotransmitters (nitric oxide, glutamate, acetylcholine) and related enzymes (calcineurin, nitric oxide synthase and acetylcholinesterase) were measured using biochemical detection. Compared to the control group, the levels of the nitric oxide (81.04 ± 12.84 µmol/g prot) and acetylcholine (30.93 ± 12.57 µg/mg prot) in M. chinensis philippi of IHg-treated were decreased, while glutamate (2.11 ± 0.61 mmol/L) increased significantly; the activity of nitric oxide synthase (679.34 ± 135.33 U/mg prot) was increased, while acetylcholinesterase (1.39 ± 0.44 U/mg prot) decreased significantly, and the activity of calcineurin (0.52 ± 0.02 U/mg prot) had a statistically insignificant increasing tendency. The concentration of Ca2+ (0.92 ± 0.46 mmol/g prot) in the IHg-treated group was significantly higher than that in the control group. OPLS-DA was performed to reveal the difference in metabolites between the control and IHg-challenged groups, the metabolites of glucose, glutamine, inosine, succinate, glutamate, homarine, and alanine were sensitive to IHg, subsequently metabolic pathways that were affected including glucose metabolism, glutamine metabolism, nucleotide metabolism, Krebs cycle, amino acid metabolism and osmotic regulation. In our study, IHg interfered with metabolites in M. chinensis philippi, thus the corresponding metabolic pathways were changed, which influenced the neurotransmitters subsequently. Furthermore, Ca2+overload affected the synthesis or degradation of the neurotransmitters, and then the altered neurotransmitters involved in changes in metabolic pathways again. Overall, we hypothesized that the neurotoxic effects of IHg on bivalve were in close contact with metabolism, neurotransmitters, related enzymes and Ca2+, which could be effective neurotoxic biomarkers for marine environmental quality assessment, and also provide effective data for the study of the regulatory mechanism of the nervous system in response to IHg in bivalves.


Assuntos
Bivalves , Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Animais , Mercúrio/toxicidade , Mercúrio/metabolismo , Acetilcolinesterase , Óxido Nítrico , Acetilcolina , Calcineurina , Glutamina , Poluentes Químicos da Água/toxicidade , Bivalves/metabolismo , Glutamatos , Neurotransmissores , Óxido Nítrico Sintase , Compostos de Metilmercúrio/toxicidade
3.
Environ Pollut ; 347: 123725, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38467369

RESUMO

Methylmercury (MeHg) is one of the most worrisome pollutants in marine systems. MeHg detoxification is mediated by merB and merA genes, responsible for the demethylation of MeHg and the reduction of inorganic mercury, respectively. Little is known about the biological capacity to detoxify this compound in marine environments, and even less the bacterial transcriptional changes during MeHg detoxification. This study provides the genomic and transcriptomic characterization of the deep ocean bacteria Alteromonas mediterranea ISS312 with capacity for MeHg degradation. Its genome sequence revealed four mer operons containing three merA gene and two merB gene copies, that could be horizontally transferred among distant related genomes by mobile genetic elements. The transcriptomic profiling in the presence of 5 µM MeHg showed that merA and merB genes are within the most expressed genes, although not all mer genes were equally transcribed. Besides, we aimed to identify functional orthologous genes that displayed expression profiles highly similar or identical to those genes within the mer operons, which could indicate they are under the same regulatory controls. We found contrasting expression profiles for each mer operon that were positively correlated with a wide array of functions mostly related to amino acid metabolism, but also to flagellar assembly or two component systems. Also, this study highlights that all merAB genes of the four operons were globally distributed across oceans layers with higher transcriptional activity in the mesopelagic deeper waters. Our study provides new insights about the transcriptional patterns related to the capacity of marine bacteria to detoxify MeHg, with important implications for the understanding of this process in marine ecosystems.


Assuntos
Alteromonas , Mercúrio , Compostos de Metilmercúrio , Compostos de Metilmercúrio/metabolismo , Ecossistema , Mercúrio/metabolismo , Bactérias/metabolismo , Perfilação da Expressão Gênica , Genômica
4.
J Trace Elem Med Biol ; 83: 127399, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38325180

RESUMO

BACKGROUND: Thimerosal (TM) is a toxic, organometallic mercury compound (which releases ethyl-mercury-containing compounds in aqueous solutions) used as a preservative in vaccines. Mitochondria are organelle which are highly vulnerable to many chemical compounds, including mercury (Hg) and its derivatives. METHOD: Wistar rats (at 21 days of age) were used to model a child's TM exposure following childhood vaccination, divided in two groups: TM exposed (20 µg/kg/day) and unexposed controls (saline solution), both for 24 h. Atomic Fluorescence Spectrometry was used to quantify the amounts of mercury in tissues. The electron transport chain (ETC) from isolated mitochondria was evaluated using an oxygen electrode. The mitochondrial membrane potential and H2O2 production were analyzed using selective fluorescence probes. The activity of some enzymes (SOD, CAT, GPx, and AChE) and secondary markers of oxidative stress (GSH, GSSG, total free thiol) were also examined in tissues. RESULTS: Hg accumulation in the brain and liver was higher in exposed animals when compared to the control. Liver-isolated mitochondria showed that TM improved respiratory control by 23%; however, states 3 and 4 of the ETC presented a decrease of 16% and 37%, respectively. Furthermore, brain-isolated mitochondria presented an improvement of 61% in respiratory control. Brain enzyme activities were significantly impacted in TM-exposed rats compared to unexposed rats as follows: decreases in SOD (32%) and AChE (42%) and increases in GPx (79%) and CAT (100%). GPx enzyme activity in the liver was significantly increased (37%). Among secondary oxidative stress markers, the brain's total reduced thiol (SH) concentration was significantly increased (41%). CONCLUSION: Acute TM treatment exposure in a Wistar rat model mimicking TM exposure in an infant following childhood vaccination significantly damaged brain bioenergetic pathways. This study supports the ability of TM exposure to preferentially damage the nervous system.


Assuntos
Compostos de Etilmercúrio , Compostos de Mercúrio , Mercúrio , Humanos , Criança , Lactente , Ratos , Animais , Mercúrio/toxicidade , Mercúrio/metabolismo , Timerosal/farmacologia , Peróxido de Hidrogênio/metabolismo , Ratos Wistar , Mitocôndrias/metabolismo , Superóxido Dismutase , Compostos de Sulfidrila
5.
Environ Toxicol ; 39(5): 2937-2947, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38308452

RESUMO

Mercury chloride is a type of heavy metal that causes the formation of free radicals, causing hepatotoxicity, nephrotoxicity and apoptosis. In this study, the effects of naringenin on oxidative stress and apoptosis in the liver and kidney of rats exposed to mercury chloride were investigated. In the study, 41 2-month-old male Wistar-Albino rats were divided into five groups. Accordingly, group 1 was set as control group, group 2 as naringenin-100, group 3 as mercury chloride, group 4 as mercury chloride + naringenin-50, and group 5 as mercury chloride + naringenin-100. For the interventions, 1 mL/kg saline was administered to the control, 0.4 mg/kg/day mercury (II) chloride to the mercury chloride groups by i.p., and 50 and 100 mg/kg/day naringenin prepared in corn oil to the naringenin groups by gavage. All the interventions lasted for 20 days. Mercury chloride administration was initiated 1 h following the administration of naringenin. When mercury chloride and the control group were compared, a significant increase in plasma urea, liver and kidney malondialdehyde (MDA) levels, in kidney superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), glutathione-S-transferase (GST) activities (p < .001), and a significant decrease in liver and kidney glutathione (GSH) levels (p < .001), in liver catalase (CAT) activity (p < .01) were observed. In addition, histopathological changes and a significant increase in caspase-3 levels were detected (p < .05). When mercury chloride and treatment groups were compared, the administration of naringenin caused a decrease aspartate transaminase (AST), alanine transaminase (ALT), lactate dehydrogenase (LDH) (p < .01), urea, creatinine levels (p < .001) in plasma, MDA levels in liver and kidney, SOD, GSH-Px, GST activities in kidney (p < .001), and increased GSH levels in liver and kidney. The addition of naringenin-100 increased GSH levels above the control (p < .001). The administration of naringenin was also decreased histopathological changes and caspase-3 levels (p < .05). Accordingly, it was determined that naringenin is protective and therapeutic against mercury chloride-induced oxidative damage and apoptosis in the liver and kidney, and 100 mg/kg naringenin is more effective in preventing histopathological changes and apoptosis.


Assuntos
Cloretos , Flavanonas , Mercúrio , Ratos , Masculino , Animais , Cloretos/metabolismo , Caspase 3/metabolismo , Ratos Wistar , Cloreto de Mercúrio/toxicidade , Cloreto de Mercúrio/metabolismo , Estresse Oxidativo , Antioxidantes/metabolismo , Rim , Fígado , Glutationa/metabolismo , Superóxido Dismutase/metabolismo , Apoptose , Mercúrio/metabolismo , Mercúrio/farmacologia , Ureia
6.
Genes (Basel) ; 15(2)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397246

RESUMO

Mercury (Hg) pollution not only poses a threat to the environment but also adversely affects the growth and development of plants, with potential repercussions for animals and humans through bioaccumulation in the food chain. Maize, a crucial source of food, industrial materials, and livestock feed, requires special attention in understanding the genetic factors influencing mercury accumulation. Developing maize varieties with low mercury accumulation is vital for both maize production and human health. In this study, a comprehensive genome-wide association study (GWAS) was conducted using an enlarged SNP panel comprising 1.25 million single nucleotide polymorphisms (SNPs) in 230 maize inbred lines across three environments. The analysis identified 111 significant SNPs within 78 quantitative trait loci (QTL), involving 169 candidate genes under the Q model. Compared to the previous study, the increased marker density and optimized statistical model led to the discovery of 74 additional QTL, demonstrating improved statistical power. Gene ontology (GO) enrichment analysis revealed that most genes participate in arsenate reduction and stress responses. Notably, GRMZM2G440968, which has been reported in previous studies, is associated with the significant SNP chr6.S_155668107 in axis tissue. It encodes a cysteine proteinase inhibitor, implying its potential role in mitigating mercury toxicity by inhibiting cysteine. Haplotype analyses provided further insights, indicating that lines carrying hap3 exhibited the lowest mercury content compared to other haplotypes. In summary, our study significantly enhances the statistical power of GWAS, identifying additional genes related to mercury accumulation and metabolism. These findings offer valuable insights into unraveling the genetic basis of mercury content in maize and contribute to the development of maize varieties with low mercury accumulation.


Assuntos
Mercúrio , Locos de Características Quantitativas , Humanos , Mapeamento Cromossômico , Zea mays/genética , Zea mays/metabolismo , Polimorfismo de Nucleotídeo Único , Estudo de Associação Genômica Ampla , Mercúrio/toxicidade , Mercúrio/metabolismo , Fenótipo
7.
Food Res Int ; 180: 114086, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395583

RESUMO

This study aimed to explore the concentrations of Se and Hg in marine fish along the Gulf of Mannar (southeast coast of India) and to assess related risks and risk-based consumption limits for children, pregnant women, and adults. Se concentrations in pelagic and benthic fish ranged from 0.278 to 0.470 mg/kg and 0.203 to 0.294 mg/kg, respectively, whereas Hg concentrations ranged from 0.028 to 0.106 mg/kg and 0.026 to 0.097 mg/kg, respectively. Se and Hg contents in demersal fish (Nemipterus japonicus) were 0.282 and 0.039 mg/kg, respectively. The lowest and highest Hg concentrations in pelagic fish were found in Scomberomorus commersoni and Euthynnus affinis whereas the lowest and highest Se concentrations in benthic fish were found in Scarus ghobban and Siganus javus. Se concentrations in marine fishes were found in the following order: pelagic > demersal > benthic whereas Hg concentrations were found in the following order: pelagic > benthic > demersal. The presence of Se in fish was positively correlated with trophic level (TL) and size whereas that of Hg was weakly correlated with TL and habitat and negatively correlated with size. Se risk-benefit analysis, the AI/RDI (actual intake/recommended daily intake) ratio was > 100 % and the AI/UL (upper limit) ratio was < 100 %, indicating that all fish have sufficient levels of Se to meet daily requirements without exceeding the UL. Hg level was below the maximum residual limit (MRL) of 0.5 mg/kg for most fish but it was 1 mg/kg in E. affinis and Lethrinus lentjan. The target hazard quotient (THQ < 1) and hazard index (HI < 1) imply that the consumption of fish poses no noncarcinogenic health risks. However, all examined fish had a mean Se/Hg molar ratio > 1, indicating that human intake of fishwas rather safe relative to Hg content. Health benefit indexes (Se-HBV and HBVse) with high positive values in all fish supported the protective effect of Se against Hg toxicity, suggesting the overall safety of fish consumption. The high Se/Hg ratio in fish could be attributed to the replacement of Se bound to Hg, thereby suppressing Hg toxicity and maintaining normal selenoprotein synthesis. This insight is useful for a better understanding of food safety analysis.


Assuntos
Mercúrio , Selênio , Poluentes Químicos da Água , Gravidez , Animais , Criança , Adulto , Humanos , Feminino , Selênio/análise , Mercúrio/análise , Mercúrio/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Peixes/metabolismo , Medição de Risco
8.
Aquat Toxicol ; 267: 106836, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38232614

RESUMO

Mercury (Hg) is a priority pollutant of global concern because of its toxicity, its ability to bioaccumulate throughout the food web and reach significant concentrations in top predators. Phytoplankton bioconcentrate large amounts of Hg and play a key role in the entry of Hg into the aquatic food web. However, the subcellular distribution of Hg in freshwater phytoplankton, known to affect it toxicity and trophic transfer is understudied. The present study aimed at investigating the accumulation of inorganic Hg (iHg) and its subcellular distribution in freshwater phytoplankton species. To this end green alga Chlamydomonas reinhardtii and diatom Cyclotella meneghiniana were exposed to 10 and 100 nM of iHg for 2 h. The concentrations of Hg in the adsorbed, intracellular and subcellular (granules, debris, organelles, heat-stable peptides (HSP) and heat-denaturable proteins (HDP)) fractions were determined. The results showed that C. meneghiniana accumulated more Hg compared to C. reinhardtii at both iHg exposure concentrations (10 nM: 4.41 ± 0.74 vs. 1.10 ± 0.25 amol cell-1; 100 nM: 79.35 ± 10.78 vs. 38.31 ± 4.15 amol cell-1). The evaluation of the subcellular distribution of Hg, revealed that the majority of Hg was concentrated in the organelles fraction (59.7 % and 74.6 %) in the green algae. In the diatom, Hg was mainly found in the organelles (40.9 % and 33.3%) and in the HSP fractions (26.8 % and 40.1 %). The proportion of Hg in HDP fraction decreased in favor of the organelles fraction in C. reinhardtii when the exposure concentration increased, whereas the proportions in the debris and organelles fractions decreased in favor of HSP fraction in C. meneghiniana. This study provides pioneering information on the subcellular distribution of Hg within in freshwater phytoplankton, a knowledge that is essential to understand the toxicity and trophic transfer of Hg in contaminated aquatic environment.


Assuntos
Chlamydomonas reinhardtii , Clorófitas , Diatomáceas , Mercúrio , Poluentes Químicos da Água , Mercúrio/metabolismo , Diatomáceas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Poluentes Químicos da Água/toxicidade , Fitoplâncton/metabolismo , Clorófitas/metabolismo
9.
Nat Food ; 5(1): 72-82, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177223

RESUMO

Dietary exposure to methylmercury (MeHg) causes irreversible damage to human cognition and is mitigated by photolysis and microbial demethylation of MeHg. Rice (Oryza sativa L.) has been identified as a major dietary source of MeHg. However, it remains unknown what drives the process within plants for MeHg to make its way from soils to rice and the subsequent human dietary exposure to Hg. Here we report a hidden pathway of MeHg demethylation independent of light and microorganisms in rice plants. This natural pathway is driven by reactive oxygen species generated in vivo, rapidly transforming MeHg to inorganic Hg and then eliminating Hg from plants as gaseous Hg°. MeHg concentrations in rice grains would increase by 2.4- to 4.7-fold without this pathway, which equates to intelligence quotient losses of 0.01-0.51 points per newborn in major rice-consuming countries, corresponding to annual economic losses of US$30.7-84.2 billion globally. This discovered pathway effectively removes Hg from human food webs, playing an important role in exposure mitigation and global Hg cycling.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Oryza , Recém-Nascido , Humanos , Mercúrio/metabolismo , Oryza/metabolismo , Cadeia Alimentar , Compostos de Metilmercúrio/metabolismo , Desmetilação
10.
Chem Commun (Camb) ; 60(11): 1464-1467, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38223951

RESUMO

Mercury sulfide (HgS) exerts extensive biological effects on neuronal function. To investigate the direct target of HgS in neuronal cells, we developed a biotin-tagged HgS probe (bio-HgS) and employed an affinity purification technique to capture its target proteins. Then, we identified S-phase kinase-associated protein 1 (Skp1) as a potential target of HgS. Unexpectedly, we discovered that HgS covalently binds to Skp1 through a "Cys62-HgS-Cys120" mode. Moreover, our findings revealed that HgS inhibits the ubiquitin-protease system through Skp1 to up-regulate SNAP-25 expression, thereby triggering synaptic vesicle exocytosis to regulate locomotion ability in C. elegans. Collectively, our findings may promote a comprehensive interpretation of the pharmacological mechanism of mercury sulfide on neuroprotective function.


Assuntos
Compostos de Mercúrio , Mercúrio , Animais , Mercúrio/metabolismo , Proteínas Quinases Associadas a Fase S , Caenorhabditis elegans/metabolismo , Neuroproteção , Sulfetos/metabolismo
11.
Environ Pollut ; 342: 123050, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38042473

RESUMO

Interaction of different environmental constrains pose severe threats to plants that cannot be predicted from individual stress exposure. In this context, mercury (Hg), as a typical toxic and hazardous heavy metal, has recently attracted particular attention. Nitrogen (N2)-fixing legumes can be used for phytoremediation of Hg accumulation, whereas N availability could greatly affect its N2-fixation efficiency. However, information on the physiological responses to combined Hg exposure and excess N supply of woody legume species is still lacking. Here, we investigated the interactive effects of rhizobia inoculation, Hg exposure (+Hg), and high N (+N) supply, individually and in combination (+N*Hg), on photosynthesis and biochemical traits in Robinia pseudoacacia L. seedlings of two provenances, one from Northeast (DB) and one from Northwest (GS) China. Our results showed antagonistic effects of combined + N*Hg exposure compared to the individual treatments that were provenance-specific. Compared to individual Hg exposure, combined + N*Hg stress significantly increased foliar photosynthesis (+50.6%) of inoculated DB seedlings and resulted in more negative (-137.4%) δ15N abundance in the roots. Furthermore, combined + N*Hg stress showed 47.7% increase in amino acid N content, 39.4% increase in NR activity, and 14.8% decrease in MDA content in roots of inoculated GS seedlings. Inoculation with rhizobia significantly promoted Hg uptake in both provenances, reduced MDA contents of leaves and roots, enhanced photosynthesis and maintained the nutrient balance of Robinia. Among the two Robinia provenances investigated, DB seedlings formed more nodules, had higher biomass and Hg accumulation than GS seedlings. For example, total Hg concentrations in leaves and roots and total biomass of inoculated DB seedlings were 1.3,1.9 and 3.4 times higher than in inoculated GS seedlings under combined + N*Hg stress, respectively. Therefore, the DB provenance is considered to possess a higher potential for phytoremediation of Hg contamination compared to the GS provenance in environments subjected to N deposition.


Assuntos
Fabaceae , Mercúrio , Rhizobium , Robinia , Robinia/metabolismo , Simbiose , Mercúrio/toxicidade , Mercúrio/metabolismo , Biodegradação Ambiental , Nitrogênio/metabolismo , Plântula
12.
Environ Pollut ; 341: 123016, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38008253

RESUMO

Mercury (Hg) and its inorganic and organic compounds significantly threaten the ecosystem and human health. However, the natural and anthropogenic Hg environmental inputs exceed 5000 metric tons annually. Hg is usually discharged in elemental or ionic forms, accumulating in surface water and sediments where Hg-methylating microbes-mediated biotransformation occurs. Microbial genetic factors such as the mer operon play a significant role in the complex Hg biogeochemical cycle. Previous reviews summarize the fate of environmental Hg, its biogeochemistry, and the mechanism of bacterial Hg resistance. This review mainly focuses on the mer operon and its components in detecting, absorbing, bioaccumulating, and detoxifying environmental Hg. Four components of the mer operon, including the MerR regulator, divergent mer promoter, and detoxification factors MerA and MerB, are rare bio-parts for assembling synthetic bacteria, which tackle pollutant Hg. Bacteria are designed to integrate synthetic biology, protein engineering, and metabolic engineering. In summary, this review highlights that designed bacteria based on the mer operon can potentially sense and bioremediate pollutant Hg in a green and low-cost manner.


Assuntos
Poluentes Ambientais , Mercúrio , Humanos , Mercúrio/metabolismo , Ecossistema , Bactérias/genética , Bactérias/metabolismo , Óperon , Poluentes Ambientais/metabolismo
13.
Biol Trace Elem Res ; 202(4): 1752-1766, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37491615

RESUMO

The current study evaluated the potential ameliorative effect of a dietary immune modulator, Nannochloropsis oculata microalga, on the mercuric chloride (HgCl2)-induced toxicity of Nile tilapia. Nile tilapia (45-50 g) were fed a control diet or exposed to » LC50 of HgCl2 (0.3 mg/L) and fed on a medicated feed supplemented with N. oculata (5% and 10% (50 or 100 g/kg dry feed)) for 21 days. Growth and somatic indices, Hg2+ bioaccumulation in muscles, and serum acetylcholinesterase (AChE) activity were investigated. Antioxidant and stress-related gene expression analyses were carried out in gills and intestines. Histopathological examinations of gills and intestines were performed to monitor the traits associated with Hg2+ toxicity or refer to detoxification. Hg2+ toxicity led to significant musculature bioaccumulation, inhibited AChE activity, downregulated genes related to antioxidants and stress, and elicited histopathological changes in the gills and intestine. Supplementation with N. oculata at 10% was able to upregulate the anti-oxidative-related genes while downregulated the stress apoptotic genes in gills and intestines compared to the unexposed group. In addition, minor to no histopathological traits were detected in the gills and intestines of the N. oculata-supplemented diets. Our data showed the benefit of dietary N. oculata in suppressing Hg2+ toxicity, which might support its efficacy as therapeutic/preventive agent to overcome environmental heavy metal pollution in aquatic habitats.


Assuntos
Ciclídeos , Mercúrio , Animais , Mercúrio/toxicidade , Mercúrio/metabolismo , Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Dieta , Suplementos Nutricionais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Estresse Oxidativo , Imunidade , Ração Animal/análise
14.
Environ Pollut ; 342: 123117, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38086507

RESUMO

Mercury (Hg) pollution is a global concern in cropland systems. Hg contamination causes a disruption in the growth, energy metabolism, redox balance, and photosynthetic activity of plants. In the removal of Hg toxicity, a recent critical strategy is the use of aerogels with biodegradability and biocompatibility. However, it is unknown how graphene oxide-based aerogels stimulate the defense systems in wheat plants exposed to Hg toxicity. Therefore, in this study, the photosynthetic, genetic, and biochemical effects of reduced graphene oxide aerogel treatments (gA; 50-100-250 mg L-1) were examined in wheat (Triticum aestivum) under Hg stress (50 µM HgCl2). The relative growth rate (RGR) significantly decreased (84%) in response to Hg stress. However, the reduced RGR and water relations (RWC) of wheat were improved by gA treatments. The impaired gas exchange levels (stomatal conductance, carbon assimilation rate, intercellular CO2 concentrations, and transpiration rate) caused by stress were reversed under Hg plus gAs. Additionally, stress hampered chlorophyll fluorescence (Fv/Fo, Fv/Fm), and under Hg toxicity the expression of psaA genes was reduced (>0.4-fold), but psaB gene was significantly up-regulated (>3-fold) which are the genes involved in PSI. By increasing expression patterns of both genes relating to PSI, gAs reversed the adverse consequences on Fv/Fo and Fv/Fm in the presence of excessive Hg concentration. The activities of glutathione S-transferase (GST), glutathione reductase (GR), catalase (CAT), ascorbate peroxidase (APX) and dehydroascorbate reductase (DHAR) decreased under Hg toxicity. On the other hand, the activities of superoxide dismutase (SOD), APX, GST, and glutathione peroxidase (GPX) increased following gA treatments against stress, leading to the successful elimination of toxic levels of H2O2 and lipid peroxidation (TBARS content) by decreasing the levels by about 30%, and 40%, respectively. By modulating enzyme/non-enzyme activity/contents including the AsA-GSH cycle, gAs contributed to the protection of the cellular redox state. Most important of all, gA applications were able to reduce Hg intake by approximately 66%. Therefore, these results showed that gAs were effective in highly inhibiting Hg uptake and could significantly increase wheat tolerance to toxicity by eliminating Hg-induced oxidative damage and inhibiting metabolic processes involved in photosynthesis. The findings obtained from the study provide a new perspective on the alleviation roles of reduced graphene oxide aerogels as an effective adsorbent for decreasing damages of mercury toxicity in wheat plants.


Assuntos
Antioxidantes , Grafite , Mercúrio , Antioxidantes/metabolismo , Triticum/metabolismo , Mercúrio/toxicidade , Mercúrio/metabolismo , Peróxido de Hidrogênio/metabolismo , Oxirredução , Fotossíntese , Estresse Oxidativo , Ascorbato Peroxidases/metabolismo , Expressão Gênica , Glutationa/metabolismo
15.
Chemosphere ; 350: 141038, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38147928

RESUMO

Wastewater containing selenium (Se) and soil contaminated by mercury (Hg) are two environmental problems, but they are rarely considered for synergistic treatment. In this work, anaerobic granular sludge (AnGS) was used to address both of the aforementioned issues simultaneously. The performance and mechanisms of Se(IV) removal from wastewater and Hg(II) immobilization in soil were investigated using various technologies. The results of the reactor operation indicated that the AnGS efficiently removed Se from wastewater, with a removal rate of 99.94 ± 0.05%. The microbial communities in the AnGS could rapidly reduce Se(IV) to Se0 nanoparticles (SeNPs). However, the AnGS lost the ability to reduce Se(IV) once the Se0 content reached the saturation value of 5.68 g Se/L. The excess sludge of Se0-rich AnGS was applied to remediate soil contaminated with Hg(II). The Se0-rich AnGS largely decreased the percentage of soil Hg in the mobile, extractable phase, with up to 99.1 ± 0.3% immobilization. Soil Hg(II) and Hg0 can react with Se (-II) and Se0, respectively, to form HgSe. The formation of inert HgSe was an important pathway for immobilizing Hg. Subsequently, the pot experiments indicated that soil remediation using Se0-rich AnGS significantly decreased the Hg content in pea plants. Especially, the content of Hg decreased from 555 ± 100 to 24 ± 3 µg/kg in roots after remediation. In summary, AnGS is an efficient and cost-effective material for synergistically treating Se-contaminated wastewater and Hg-contaminated soil.


Assuntos
Mercúrio , Selênio , Mercúrio/metabolismo , Selênio/metabolismo , Esgotos , Águas Residuárias , Anaerobiose , Solo
16.
Sci Rep ; 13(1): 19958, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968352

RESUMO

Methylmercury (MeHg) is converted to inorganic mercury (iHg) in several organs; however, its impact on tissues and cells remains poorly understood. Previously, we established a bacterial organomercury lyase (MerB)-expressing mammalian cell line to overcome the low cell permeability of iHg and investigate its effects. Here, we elucidated the cytotoxic effects of the resultant iHg on autophagy and deciphered their relationship. Treatment of MerB-expressing cells with MeHg significantly increases the mRNA and protein levels of LC3B and p62, which are involved in autophagosome formation and substrate recognition, respectively. Autophagic flux assays using the autophagy inhibitor chloroquine (CQ) revealed that MeHg treatment activates autophagy in MerB-expressing cells but not in wild-type cells. Additionally, MeHg treatment induces the accumulation of ubiquitinated proteins and p62, specifically in MerB-expressing cells. Confocal microscopy revealed that large ubiquitinated protein aggregates (aggresomes) associated with p62 are formed transiently in the perinuclear region of MerB-expressing cells upon MeHg exposure. Meanwhile, inhibition of autophagic flux decreases the MeHg-induced cell viability of MerB-expressing cells. Overall, our results imply that cells regulate aggresome formation and autophagy activation by activating LC3B and p62 to prevent cytotoxicity caused by iHg. These findings provide insights into the role of autophagy against iHg-mediated toxicity.


Assuntos
Liases , Mercúrio , Compostos de Metilmercúrio , Animais , Mercúrio/toxicidade , Mercúrio/metabolismo , Compostos de Metilmercúrio/toxicidade , Compostos de Metilmercúrio/metabolismo , Liases/genética , Liases/metabolismo , Autofagia , Mamíferos/metabolismo
17.
Sci Rep ; 13(1): 21132, 2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036518

RESUMO

Mercury (Hg) pollution in agricultural soils and its potential pathway to the human food chain can pose a serious health concern. Understanding the pathway of Hg in plants and how the speciation may change upon interaction with other elements used for biofortification can be critical to assess the real implications for the final plant-based product. In that respect, selenium (Se) biofortification of crops grown in Se-poor soil regions is becoming a common practice to overcome Se deficient diets. Therefore, it is important to assess the interplay between these two elements since Se may form complexes with Hg reducing its bioavailability and toxicity. In this work, the speciation of Hg in wheat plants grown hydroponically under the presence of Hg (HgCl2) and biofortified with Se (selenite, selenate, or a 1:1 mixture of both) has been investigated by X-ray absorption spectroscopy at the Hg L3-edge. The main Hg species found in wheat grains was the highly toxic methylmercury. It was found that the Se-biofortification of wheat did not prevent, in general, the Hg translocation to grains. Only the 1:1 mixture treatment seemed to have an effect in reducing the levels of Hg and the presence of methylmercury in grains.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Selênio , Humanos , Selênio/metabolismo , Mercúrio/toxicidade , Mercúrio/metabolismo , Compostos de Metilmercúrio/toxicidade , Compostos de Metilmercúrio/metabolismo , Triticum/metabolismo , Solo/química , Produtos Agrícolas/metabolismo
18.
Front Public Health ; 11: 1265864, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026429

RESUMO

Humans are exposed to lead (Pb), mercury (Hg), and cadmium (Cd) through various routes, including drinking water, and such exposure can lead to a range of toxicological effects. However, few studies have investigated the toxic effects of exposure to mixtures of metals, particularly in relation to neurotoxicity. In this study, 7-week-old male mice were exposed to Pb, Hg, and Cd individually or in combination through their drinking water for 28 days. The mice exposed to the metal mixture exhibited significantly reduced motor coordination and impaired learning and memory abilities compared to the control group and each of the single metal exposure groups, indicating a higher level of neurotoxicity of the metal mixture. The dopamine content in the striatum was significantly lower in the metal mixture exposure group than in the single metal exposure groups and the control group. Furthermore, compared to the control group, the metal mixture exposure group showed a significantly lower expression level of tyrosine hydroxylase (TH) and significantly higher expression levels of dopamine transporter (DAT), tryptophan hydroxylase 1 (TPH1), and serotonin reuptake transporter (SERT). Notably, there were no significant differences in SERT expression between the single metal exposure groups and the control group, but SERT expression was significantly higher in the metal mixture exposure group than in the single metal and control groups. These findings suggest that the key proteins involved in the synthesis and reuptake of dopamine (TH and DAT, respectively), as well as in the synthesis and reuptake of serotonin (TPH1 and SERT, respectively), play crucial roles in the neurotoxic effects associated with exposure to metal mixtures. In conclusion, this study demonstrates that simultaneous exposure to different metals can impact key enzymes involved in dopaminergic and serotonergic neurotransmission processes, leading to disruptions in dopamine and serotonin homeostasis and consequently a range of detrimental neurobehavioral effects.


Assuntos
Água Potável , Mercúrio , Síndromes Neurotóxicas , Humanos , Camundongos , Masculino , Animais , Chumbo/toxicidade , Cádmio/toxicidade , Mercúrio/toxicidade , Mercúrio/metabolismo , Dopamina/metabolismo , Serotonina/metabolismo , Transmissão Sináptica , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo
19.
ISME J ; 17(12): 2313-2325, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37880540

RESUMO

Mangrove sediment is a crucial component in the global mercury (Hg) cycling and acts as a hotspot for methylmercury (MeHg) production. Early evidence has documented the ubiquity of well-studied Hg methylators in mangrove superficial sediments; however, their diversity and metabolic adaptation in the more anoxic and highly reduced subsurface sediments are lacking. Through MeHg biogeochemical assay and metagenomic sequencing, we found that mangrove subsurface sediments (20-100 cm) showed a less hgcA gene abundance but higher diversity of Hg methylators than superficial sediments (0-20 cm). Regional-scale investigation of mangrove subsurface sediments spanning over 1500 km demonstrated a prevalence and family-level novelty of Hg-methylating microbial lineages (i.e., those affiliated to Anaerolineae, Phycisphaerae, and Desulfobacterales). We proposed the candidate phylum Zixibacteria lineage with sulfate-reducing capacity as a currently understudied Hg methylator across anoxic environments. Unlike other Hg methylators, the Zixibacteria lineage does not use the Wood-Ljungdahl pathway but has unique capabilities of performing methionine synthesis to donate methyl groups. The absence of cobalamin biosynthesis pathway suggests that this Hg-methylating lineage may depend on its syntrophic partners (i.e., Syntrophobacterales members) for energy in subsurface sediments. Our results expand the diversity of subsurface Hg methylators and uncover their unique ecophysiological adaptations in mangrove sediments.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Mercúrio/metabolismo , Filogenia , Sedimentos Geológicos/microbiologia , Compostos de Metilmercúrio/metabolismo , Bactérias/genética , Bactérias/metabolismo , Poluentes Químicos da Água/metabolismo
20.
Sci Rep ; 13(1): 17854, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857791

RESUMO

Heavy metals, including mercury, are non-biodegradable and highly toxic to microorganisms even at low concentrations. Understanding the mechanisms underlying the environmental adaptability of microorganisms with Hg resistance holds promise for their use in Hg bioremediation. We characterized GbsMerA, a mercury reductase belonging to the mercury-resistant operon of Gelidibacter salicanalis PAMC21136, and found its maximum activity of 474.7 µmol/min/mg in reducing Hg+2. In the presence of Ag and Mn, the enzyme exhibited moderate activity as 236.5 µmol/min/mg and 69 µmol/min/mg, respectively. GbsMerA exhibited optimal activity at pH 7.0 and a temperature of 60 °C. Moreover, the crystal structure of GbsMerA and structural comparison with homologues indicated that GbsMerA contains residues, Tyr437´ and Asp47, which may be responsible for metal transfer at the si-face by providing a hydroxyl group (-OH) to abstract a proton from the thiol group of cysteine. The complex structure with NADPH indicated that Y174 in the re-face can change its side chain direction upon NADPH binding, indicating that Y174 may have a role as a gate for NADPH binding. Moreover, the heterologous host expressing GbsMerA (pGbsMerA) is more resistant to Hg toxicity when compared to the host lacking GbsMerA. Overall, this study provides a background for understanding the catalytic mechanism and Hg detoxification by GbsMerA and suggests the application of genetically engineered E. coli strains for environmental Hg removal.


Assuntos
Escherichia coli , Mercúrio , Escherichia coli/metabolismo , NADP , Mercúrio/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...